Анонимно
Найдите три натуральных числа, сумма которых равна 407, а произведение оканчивается на 6 нулей.
Решение единственно.
Ответ
Анонимно
Для того, чтобы было 6 нулей в 3-х числах должно быть не менее 6 множителей 2 и не менее 6 множителей 5.
При чем, так как сумма не кратна 10, в одном числе должны быть 2 без 5, а в другом наоборот. Числа не могут иметь множителей 5 больше 3.Таким образом первое число 5*5*5=125. Чтобы сумма оканчивалась на 7, второе число должно заканчиваться на 2-это 2 или 32, но, если 2, то третье число будет больше суммы, а этого не может быть, так как все числа положительные. Значит второе число-32. Третье число составляем из оставшихся множителей: 2*5*5*5=250. Проверяем сумму: 250+126+32=407.
Ответ: 250;125;32
При чем, так как сумма не кратна 10, в одном числе должны быть 2 без 5, а в другом наоборот. Числа не могут иметь множителей 5 больше 3.Таким образом первое число 5*5*5=125. Чтобы сумма оканчивалась на 7, второе число должно заканчиваться на 2-это 2 или 32, но, если 2, то третье число будет больше суммы, а этого не может быть, так как все числа положительные. Значит второе число-32. Третье число составляем из оставшихся множителей: 2*5*5*5=250. Проверяем сумму: 250+126+32=407.
Ответ: 250;125;32
Новые вопросы по Математике
1 - 4 классы
54 секунды назад
5 - 9 классы
1 минута назад
1 - 4 классы
1 минута назад
10 - 11 классы
1 минута назад
1 - 4 классы
1 минута назад