Анонимно
Все апельсины смотрят кино. Все, кто не смотрит кино имеют по три уха. Те, у кого больше двух ушей не говорят на французском языке. Только те кто говорит по- французски, рано по утрам пьют кофе. Следовательно все апельсины пьют кофе по утрам. Верно ли последние предложение?
Ответ
Анонимно
В математике и философии имеется очень полезное понятие – дихотомия, т.е. принцип деления всех понятий на два сорта – удовлетворяющие какому-то принципу и не удовлетворяющие ему.
Для начала всех можно разделить на две группы: апельсины [tex] A [/tex] и не-апельсины [tex] F [/tex]. Значит, все, кто в [tex] A [/tex] – смотрят кино.
Остальных можно разделить ещё на две группы [tex] F_K [/tex] – не-апельсины, которые всё же смотрят кино (это же не запрещено) и [tex] F_3 [/tex] – не-апельсины, которые не смотрят кино.
Далее, речь идёт именно о группе [tex] F_3 [/tex], т.е. о тех, кто не смотрит кино. У них у всех по три уха.
Теперь, мы знаем, что у всех из [tex] F_3 [/tex] по три уха, так как они не смотрят кино. Однако нигде не запрещено, что в остальных группах, т.е. в [tex] F_K [/tex] и в [tex] A [/tex] не может быть участников более чем с двумя ушами.
Поэтому мы точно знаем, что участники [tex] F_3 [/tex] – не говорят на французском. Однако кто-то и из [tex] F_K [/tex] и [tex] A [/tex] тоже может иметь более двух ушей, а стало быть и на французском не говорит. Значит, все остальные пьют кофе, т.е. это только некоторые участники групп [tex] F_K [/tex] и [tex] A [/tex], а именно те, которые имеют не более двух ушей.
Значит кто-то и из апельсинов [tex] A [/tex] может иметь не два уха, а больше, а значит и кофе по утрам не пьёт.
Данное в условии последнее утверждение не верно. В самом деле. Возьмём треухого апельсина, он, конечно же, смотрит кино, но по-французски он не говорит, а значит и кофе рано по утрам он не пьёт. Т.е. говорить в данном случае обо всех апельсинах – ошибочно.
*** Не верно, кстати, и обратное утверждение, т.е.: "те, что пьют кофе по утрам – непременно апельсины". В самом деле. Раз кто-то пьёт кофе по утрам, значит, он говорит по-французски, а стало быть, у него не более двух ушей, но это может быть апельсин, а может быть и не-апельсин, который, тем не менее, смотрит кино, а значит, не обязан иметь три уха.
Для начала всех можно разделить на две группы: апельсины [tex] A [/tex] и не-апельсины [tex] F [/tex]. Значит, все, кто в [tex] A [/tex] – смотрят кино.
Остальных можно разделить ещё на две группы [tex] F_K [/tex] – не-апельсины, которые всё же смотрят кино (это же не запрещено) и [tex] F_3 [/tex] – не-апельсины, которые не смотрят кино.
Далее, речь идёт именно о группе [tex] F_3 [/tex], т.е. о тех, кто не смотрит кино. У них у всех по три уха.
Теперь, мы знаем, что у всех из [tex] F_3 [/tex] по три уха, так как они не смотрят кино. Однако нигде не запрещено, что в остальных группах, т.е. в [tex] F_K [/tex] и в [tex] A [/tex] не может быть участников более чем с двумя ушами.
Поэтому мы точно знаем, что участники [tex] F_3 [/tex] – не говорят на французском. Однако кто-то и из [tex] F_K [/tex] и [tex] A [/tex] тоже может иметь более двух ушей, а стало быть и на французском не говорит. Значит, все остальные пьют кофе, т.е. это только некоторые участники групп [tex] F_K [/tex] и [tex] A [/tex], а именно те, которые имеют не более двух ушей.
Значит кто-то и из апельсинов [tex] A [/tex] может иметь не два уха, а больше, а значит и кофе по утрам не пьёт.
Данное в условии последнее утверждение не верно. В самом деле. Возьмём треухого апельсина, он, конечно же, смотрит кино, но по-французски он не говорит, а значит и кофе рано по утрам он не пьёт. Т.е. говорить в данном случае обо всех апельсинах – ошибочно.
*** Не верно, кстати, и обратное утверждение, т.е.: "те, что пьют кофе по утрам – непременно апельсины". В самом деле. Раз кто-то пьёт кофе по утрам, значит, он говорит по-французски, а стало быть, у него не более двух ушей, но это может быть апельсин, а может быть и не-апельсин, который, тем не менее, смотрит кино, а значит, не обязан иметь три уха.
Новые вопросы по Математике
5 - 9 классы
24 секунды назад
5 - 9 классы
27 секунд назад
5 - 9 классы
34 секунды назад
1 - 4 классы
39 секунд назад