Анонимно
Сколько натуральных чисел, меньших 300, которые делятся на 2 и на 7, но не делятся на 28?
Ответ
Анонимно
1. Числа, делящиеся на 2 и 7 можно определить выражением:
2*7*n = 14*n, где n- число натурального ряда.
По условию, эти числа должны быть не больше 300, т.е.
14*n ≤ 300 ⇒ n ≤ 300 : 14; ⇒ n ≤ 21ц 6/14, так как n - целое число, то самое большое получается при n₊ = 21, и всего их 21.
2. Аналогично получается выражение для чисел, делящиеся на 28.
28*n ≤ 300; n ≤ 300 : 28; n ≤ 10ц 20/28, а максимальное n₋ =10;
3. Чтобы ответить на вопрос задания и найти N, т е максимальное количество чисел, отвечающих заданию, из чисел делящихся на 14 нужно отнять делящиеся еще и на 28.
N = n₊ - n₋ = 21 - 10 = 11
Ответ: Имеется 11 чисел меньше 300, которые делятся на 2 и 7 и не делятся при этом на 28.
Более простое рассуждение:
На 2 и 7 делятся числа 2*7 =14, а также кратные 14, то есть 14*2 = 28; 14*3 = 42; 14*4 = 56; 14*5 = 70 и так далее, последнее число должно по условию быть меньше 300, а на 14 оно должно делиться без остатка 300:14 = 21 (6 ост) . это число 21*14 = 294.
По условию мы должны исключить числа, делящиеся на 28, Это будет половина всех найденных чисел, так как каждое ВТОРОЕ число будет делиться не только на 14, но и на 2*14 =28 . Таких чисел, меньших, чем 300 у нас 10, или 300 : 28 = 10 (20 ост)
Если исключить, числа, делящиеся также на 28, получим:
21 - 10 = 11
Ответ: Есть 11 чисел, меньше, чем 300, которые делятся на 2 и 7, но не делятся на 28
2*7*n = 14*n, где n- число натурального ряда.
По условию, эти числа должны быть не больше 300, т.е.
14*n ≤ 300 ⇒ n ≤ 300 : 14; ⇒ n ≤ 21ц 6/14, так как n - целое число, то самое большое получается при n₊ = 21, и всего их 21.
2. Аналогично получается выражение для чисел, делящиеся на 28.
28*n ≤ 300; n ≤ 300 : 28; n ≤ 10ц 20/28, а максимальное n₋ =10;
3. Чтобы ответить на вопрос задания и найти N, т е максимальное количество чисел, отвечающих заданию, из чисел делящихся на 14 нужно отнять делящиеся еще и на 28.
N = n₊ - n₋ = 21 - 10 = 11
Ответ: Имеется 11 чисел меньше 300, которые делятся на 2 и 7 и не делятся при этом на 28.
Более простое рассуждение:
На 2 и 7 делятся числа 2*7 =14, а также кратные 14, то есть 14*2 = 28; 14*3 = 42; 14*4 = 56; 14*5 = 70 и так далее, последнее число должно по условию быть меньше 300, а на 14 оно должно делиться без остатка 300:14 = 21 (6 ост) . это число 21*14 = 294.
По условию мы должны исключить числа, делящиеся на 28, Это будет половина всех найденных чисел, так как каждое ВТОРОЕ число будет делиться не только на 14, но и на 2*14 =28 . Таких чисел, меньших, чем 300 у нас 10, или 300 : 28 = 10 (20 ост)
Если исключить, числа, делящиеся также на 28, получим:
21 - 10 = 11
Ответ: Есть 11 чисел, меньше, чем 300, которые делятся на 2 и 7, но не делятся на 28
Новые вопросы по Математике
1 - 4 классы
35 секунд назад
10 - 11 классы
37 секунд назад
1 - 4 классы
54 секунды назад
10 - 11 классы
58 секунд назад
5 - 9 классы
1 минута назад
Нужен ответ
10 - 11 классы
1 неделя назад
Студенческий
3 недели назад
Студенческий
3 недели назад
Студенческий
3 недели назад
Студенческий
3 недели назад