Анонимно
У натурального числа n ровно 3 различных простых делителя, у числа 31 n таких делителей тоже 3, а у числа 462n –– семь. Чему равна сумма цифр наименьшего такого числа n
Ответ
Анонимно
Я уже решал эту задачу.
Если у числа n ровно 3 простых делителя, и у 31n тоже 3, то один из них равен 31.
n = 31*k*m
У числа 462n ровно 7 простых делителей.
462n = 2*231n = 2*3*77n = 2*3*7*11*13*k*m
Здесь ровно 7 делителей, значит числа k и m не равны ни 2, ни 3, ни 7, ни 11.
Наименьшие простые k и m - это 5 и 13.
n = 31*5*13 = 2015, сумма цифр равна 8
Если у числа n ровно 3 простых делителя, и у 31n тоже 3, то один из них равен 31.
n = 31*k*m
У числа 462n ровно 7 простых делителей.
462n = 2*231n = 2*3*77n = 2*3*7*11*13*k*m
Здесь ровно 7 делителей, значит числа k и m не равны ни 2, ни 3, ни 7, ни 11.
Наименьшие простые k и m - это 5 и 13.
n = 31*5*13 = 2015, сумма цифр равна 8
Новые вопросы по Математике
1 - 4 классы
41 секунда назад
1 - 4 классы
49 секунд назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
Нужен ответ
10 - 11 классы
1 неделя назад
Студенческий
3 недели назад
Студенческий
3 недели назад
Студенческий
3 недели назад
Студенческий
3 недели назад