Анонимно
Найдите все значения параметра p при которых имеет действительные корни уравнение : px^2-2px+9=0
Ответ
Анонимно
px² - 2px + 9 = 0
Это квадратное уравнение. Оно имеет действительные корни тогда когда дискриминант D ≥ 0.
D = (-2p)² - 4 · p · 9 = 4p² - 36р
4p² - 36р ≥ 0
p² - 9р ≥ 0
p(p - 9) ≥ 0
+ - +
_______|________|_______
0 9
p ∈ (-∞; 0]∪[9; +∞)
Это квадратное уравнение. Оно имеет действительные корни тогда когда дискриминант D ≥ 0.
D = (-2p)² - 4 · p · 9 = 4p² - 36р
4p² - 36р ≥ 0
p² - 9р ≥ 0
p(p - 9) ≥ 0
+ - +
_______|________|_______
0 9
p ∈ (-∞; 0]∪[9; +∞)
Ответ
Анонимно
Если дискриминант больше или равен 0, то уравнение имеет действительные корни
Д=b^2-4ac=2p^2-(4*p*9)=2p^2-36p
то есть если 2p^2-36p=0 то будет один действительный корень
найдём Д=36^2-4*2*0=1296
p1=(36+√1296)/2=36
p2=(36-36)/2=0
Значит уравнение имеет действительные корни, если Р ≥ 36
Д=b^2-4ac=2p^2-(4*p*9)=2p^2-36p
то есть если 2p^2-36p=0 то будет один действительный корень
найдём Д=36^2-4*2*0=1296
p1=(36+√1296)/2=36
p2=(36-36)/2=0
Значит уравнение имеет действительные корни, если Р ≥ 36
Новые вопросы по Математике
1 - 4 классы
56 секунд назад
5 - 9 классы
57 секунд назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
Нужен ответ
10 - 11 классы
2 недели назад
Студенческий
4 недели назад
Студенческий
4 недели назад
Студенческий
4 недели назад
Студенческий
4 недели назад