Анонимно
пользуясь определением предела числовой последовательности, доказать, что lim n стремится к бесконечности 1/2n+1=0
Ответ
Анонимно
Доказать, что [tex] \lim_{n \to \infty} \frac{1}{2n+1} =0[/tex]
Доказательство:
По определению предела:
[tex]\forall \varepsilon \ \textgreater \ 0\,\,\,\exists N=N(\varepsilon)\,\,\,:\,\,\, \forall n \ \textgreater \ N\,\,\, | \frac{1}{2n+1} -0|\ \textless \ \varepsilon[/tex]
[tex] \frac{1}{2n+1}\ \textless \ \varepsilon\\ 2n+1\ \textgreater \ \frac{1}{\varepsilon} \\ 2n\ \textgreater \ \frac{1-\varepsilon}{\varepsilon}\\ n\ \textgreater \ \frac{1-\varepsilon}{2\varepsilon}\\ \\n=[ \frac{1-\varepsilon}{2\varepsilon}]+1 [/tex]
Доказательство:
По определению предела:
[tex]\forall \varepsilon \ \textgreater \ 0\,\,\,\exists N=N(\varepsilon)\,\,\,:\,\,\, \forall n \ \textgreater \ N\,\,\, | \frac{1}{2n+1} -0|\ \textless \ \varepsilon[/tex]
[tex] \frac{1}{2n+1}\ \textless \ \varepsilon\\ 2n+1\ \textgreater \ \frac{1}{\varepsilon} \\ 2n\ \textgreater \ \frac{1-\varepsilon}{\varepsilon}\\ n\ \textgreater \ \frac{1-\varepsilon}{2\varepsilon}\\ \\n=[ \frac{1-\varepsilon}{2\varepsilon}]+1 [/tex]
Новые вопросы по Математике
1 - 4 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
10 - 11 классы
1 минута назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад