Анонимно
Найдите сумму тех значений параметра а, при которых уравнение (a^2+3a-10)*x^2+(a+5)*x+2=0 имеет ровно одно решение
Ответ
Анонимно
Это уравнение является квадратным уравнением типа ax²+bx+c=0. Для того, чтобы квадратное уравнение имело одно решение, дискриминант должен быть равен нулю.
Д=(а+5)²-2*(а²+3а-10)*2=0
а²+10а+25-8а²-24а+80=0
-7а²-14а+105=0
а²+2а-15=0
Применив теорему Виета, получаем а1+а2=-2/2=-1
Ответ: -1
Д=(а+5)²-2*(а²+3а-10)*2=0
а²+10а+25-8а²-24а+80=0
-7а²-14а+105=0
а²+2а-15=0
Применив теорему Виета, получаем а1+а2=-2/2=-1
Ответ: -1
Новые вопросы по Математике
5 - 9 классы
59 секунд назад
1 - 4 классы
1 минута назад
1 - 4 классы
1 минута назад
1 - 4 классы
1 минута назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад