Анонимно
есть два сплава меди и олова. один сплав содержит 8%, а другой 12% олова. сколько килограммов каждого сплава надо взть, чтобы получить сплав массой 400 кг, содержащий 9% олова. решить системой уравнений.
Ответ
Анонимно
х кг - масса первого сплава
у кг - масса второго сплава
Первое уравнение:
х + у = 400
8% = 0,08
12% = 0,12
9% = 0,09
0,08х кг - масса олова в первом сплаве
0,12у кг - масса олова во втором сплаве
0,09 · 400 = 36 кг - масса олова в новом сплаве
Второе уранение:
0,08х + 0,12у = 36
А теперь решаем систему:
{х + у = 400
{0,08х + 0,12у = 36
Из первого уравнения выразим у
у = 400 - х
и подставим во второе
0,08х + 0,12·(400 - х) = 36
0,08х + 48 - 0,12х = 36
0,08х -0,12х = 36 - 48
-0,04х = - 12
х = -12 : (-0,04)
х = 300 кг - первого сплава надо взять
400 - 300 = 100 кг - второго сплава
Ответ: 300 кг; 100 кг.
у кг - масса второго сплава
Первое уравнение:
х + у = 400
8% = 0,08
12% = 0,12
9% = 0,09
0,08х кг - масса олова в первом сплаве
0,12у кг - масса олова во втором сплаве
0,09 · 400 = 36 кг - масса олова в новом сплаве
Второе уранение:
0,08х + 0,12у = 36
А теперь решаем систему:
{х + у = 400
{0,08х + 0,12у = 36
Из первого уравнения выразим у
у = 400 - х
и подставим во второе
0,08х + 0,12·(400 - х) = 36
0,08х + 48 - 0,12х = 36
0,08х -0,12х = 36 - 48
-0,04х = - 12
х = -12 : (-0,04)
х = 300 кг - первого сплава надо взять
400 - 300 = 100 кг - второго сплава
Ответ: 300 кг; 100 кг.
Новые вопросы по Математике
5 - 9 классы
51 секунда назад
1 - 4 классы
56 секунд назад
5 - 9 классы
1 минута назад
5 - 9 классы
1 минута назад
10 - 11 классы
1 минута назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад