Анонимно
Как формулируется теорема обратная признакам параллельности прямых?
Ответ
Анонимно
Сначала сформулируем обратную теорему.
Если прямая параллельна плоскости, то в этой плоскости существует прямая, параллельная данной.
Доказать? Проведем плоскость, содержащую данную прямую, и пересекающую данную плоскость. Линия пересечения плоскостей - параллельна данной прямой, потому что а) у них нет общих точек, б) они лежат в одной плоскости.
Если прямая параллельна плоскости, то в этой плоскости существует прямая, параллельная данной.
Доказать? Проведем плоскость, содержащую данную прямую, и пересекающую данную плоскость. Линия пересечения плоскостей - параллельна данной прямой, потому что а) у них нет общих точек, б) они лежат в одной плоскости.
Ответ
Анонимно
Если плоскость проходит через прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.Фактически, это теорема, обратная признаку параллельности прямой и плоскости, т.е. необходимое условие параллельности прямой и плоскости: если прямая параллельна плоскости, то в этой плоскости найдется параллельная ей
Новые вопросы по Математике
1 - 4 классы
50 секунд назад
5 - 9 классы
53 секунды назад
5 - 9 классы
54 секунды назад
5 - 9 классы
57 секунд назад
1 - 4 классы
1 минута назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад