Анонимно

Сумма цифр двузначного числа равна 9. Если эти цифры поменять местами, то получится число, которое на 63 меньше первоначального числа. Найдите первоначальное число.

Ответ

Анонимно
пусть х единицы
а у кол-во десятков
тогда наше число 10у+х
при этом из условия у+х=9

а число 10х+у меньше на 63 т.е. 10х+у+63=10у+х

система уравнений
х+у=9 ⇒ х=9-у
10х+у+63=10у+х

упростим второе
10х+у-10у-х= -63
9х-9у=-63      /9
х-у=-7

получаем систему
х=9-у
х-у=-7

9-у-у=-7
9-2у=-7
2у=16
у=8
х=1

наше число 10у+х=10*8+1=80+1=81