Анонимно
Сумма квадратов двух последовательных натуральных чисел больше произведения этих чисел на 57 . найдите эти числа
Ответ
Анонимно
Пусть n, n+1 -два последовательных натуральных числа
n^2+ (n+1)^2-n(n+1)=57
n^2+ n^2+2n+1-n^2-n=57
n^2+n-56=0
По теореме Виета
n1+n2=-1
n1*n2=-56
n1=7
n2=-8 (не удовлетворяет , так как число должно быть натуральным)
n+1=8
Ответ: 7 и 8
Если не устраивает т. Виета, решите сами по формуле корней квадратного уравнения.
n^2+ (n+1)^2-n(n+1)=57
n^2+ n^2+2n+1-n^2-n=57
n^2+n-56=0
По теореме Виета
n1+n2=-1
n1*n2=-56
n1=7
n2=-8 (не удовлетворяет , так как число должно быть натуральным)
n+1=8
Ответ: 7 и 8
Если не устраивает т. Виета, решите сами по формуле корней квадратного уравнения.
Новые вопросы по Математике
5 - 9 классы
43 секунды назад
1 - 4 классы
51 секунда назад
1 - 4 классы
55 секунд назад
5 - 9 классы
1 минута назад
1 - 4 классы
1 минута назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад