1)Найдите сумму нечетных чисел,не превосходящих 40
Ответ
Ответ:
400
Пошаговое объяснение:
Требуется вычислить сумму
S = 1 + 3 + 5 + ... + 35 + 37 + 39
Количество слагаемых равно (39-1):2+1=38:2+1=19+1=20.
1-способ. Первый член арифметической прогрессии a₁=1, разность d=2. Нужно вычислить сумму первых n=20 членов прогрессии. Так как последний член прогрессии a₂₀=39, то можно использовать формулу
[tex]\displaystyle S_{n} =\frac{a_{1}+a_{n} }{2}*n[/tex].
Тогда
[tex]\displaystyle S_{20} =\frac{a_{1}+a_{20} }{2}*20=(1+39)*10=40*10=400.[/tex]
2-способ. Перепишем сумму в двух видах
S = 1 + 3 + 5 + ... + 35 + 37 + 39
S = 39 + 37 + 35 + ... + 5 + 3 + 1
Так как количество слагаемых 20, то сумма обоих сумм равна
2·S = (1+39)+(3+37)+(5+35)+ ... +(5+35)+(3+37)+(1+39) =
=40+40+40+...+40+40+40=40·20
или
S = 40·20:2= 800:2=400.