Анонимно
Решите уравнение
2sin^2x–1/2sin2x=cos^2x
Ответ
Анонимно
cos^2x - 1/2sin2x + cosx = sinx
sin2x= 2sinx*cosx
cos^2x- 1/2*2sinx*cosx+cosx = sinx
cos^2x - 1/2*2sinx*cosx+cosx - sinx = 0
cos^2x-sinx*cosx+cosx-sinx=0
cosx(cosx+1) - sinx(cosx+1)=0
(cosx+1)*(cosx-sinx)=0
cosx+1=0 -> cosx= -1 -> x=pi+2pi*K
cosx-sinx=0 Делим уравнение на корень из 2
sin(pi/4-x)=0
pi/4-x=pi*n
x=pi/4-pi*n
Ответ
Анонимно
[tex]2sin^2x- \frac{1}{2} sin2x=cos^2x \\ 2sin^2x- \frac{1}{2} 2sinxcosx=cos^2x \\ 2sin^2x- sinxcosx-cos^2x=0[/tex]
Поделим на [tex]cos^2x[/tex]:
[tex]2tg^2x- tgx-1=0 \\ \left[\begin{array}{ccc}tgx=1\\tgx=-0,5\\\end{array}\ \\ x=\ \frac{\pi} {4}+\pi k; x=-arctg0,5+ \pi k\\\end{array}[/tex],k∈Z
Поделим на [tex]cos^2x[/tex]:
[tex]2tg^2x- tgx-1=0 \\ \left[\begin{array}{ccc}tgx=1\\tgx=-0,5\\\end{array}\ \\ x=\ \frac{\pi} {4}+\pi k; x=-arctg0,5+ \pi k\\\end{array}[/tex],k∈Z
Новые вопросы по Математике
1 - 4 классы
26 минут назад
5 - 9 классы
26 минут назад
10 - 11 классы
26 минут назад
5 - 9 классы
26 минут назад
Нужен ответ
10 - 11 классы
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад