Анонимно

Решить неравенство: 6^x+6^(x+1)>7^x

Ответ

Анонимно

Решить неравенство: 6^x+6^(x+1)>7^x

6^x + 6·6^x > 7^x

7·6^x > 7^x             |:6^x>0

[tex]7>\Big(\dfrac{7}{6}\Big)^x \\[/tex]

[tex]log_{\frac{7}{6}}\Big(\dfrac{7}{6}\Big)^x< log_{\frac{7}{6}}7\\\\x<log_{\frac{7}{6}}7\\[/tex]

О т в е т :   [tex]x\in(-\infty;log_{\frac{7}{6}}7)[/tex]