Анонимно
в правильной пирамиде sabc точка m - середина ребра bc, s - вершина. известно, что ab=6, а площадь боковой повехности равна 47. найдите длину отрезка sm.
Ответ
Анонимно
Площадь боковой поверхности = 3(ВС*SM*1/2)=47
BC*SM*1/2 =47/3
BC*SM = (47*2)/3
BC=AВ=6 (в правильной пирамиде в основании лежит равностороний треугольник)
6*SM=(47*2)/3
SM= (47*2)/(3*6)= 94/18=47/9=5 целых 2/9
Я не уверен в правильности решения.
BC*SM*1/2 =47/3
BC*SM = (47*2)/3
BC=AВ=6 (в правильной пирамиде в основании лежит равностороний треугольник)
6*SM=(47*2)/3
SM= (47*2)/(3*6)= 94/18=47/9=5 целых 2/9
Я не уверен в правильности решения.
Новые вопросы по Геометрии
10 - 11 классы
42 секунды назад
10 - 11 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
3 минуты назад
5 - 9 классы
3 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад