Анонимно
Найдите радиус окружности, описанной около трапеции с основаниями 12 см и 24 см и боковой стороной 6√10 см
Ответ
Анонимно
Трапеция ABCD: BC║AD; BC = 12 см; AD = 24 см
Описать окружность можно только около равнобедренной трапеции ⇒
AB = CD = 6√10 см
Провести две высоты BK⊥AD и CM⊥AD:
KM = BC = 12 см
AK = MD = (AD - KM)/2 = (24 - 12)/2 = 6 см
ΔCMD: ∠CMD = 90°; MD = 6 см; CD = 6√10 см. Теорема Пифагора
CM² = CD² - MD² = (6√10)² - 6² = 360 - 36 = 324
CM = √324 = 18 см
ΔACM: ∠AMC = 90°; CM = 18 см; AM = 6+12 = 18 см ⇒
CM = AM ⇒ ∠CAM = ∠ACM = 90°/2 = 45°
Окружность, которая описана около трапеции, описана и около ΔACD.
Теорема синусов:
[tex] \frac{CD}{sinCAD} =2R \\ \\ R = \frac{CD}{2sin45^o} = \frac{6 \sqrt{10} }{2* \frac{ \sqrt{2} }{2} } = 6 \sqrt{5} [/tex]
Ответ: радиус описанной окружности равен 6√5 см
Описать окружность можно только около равнобедренной трапеции ⇒
AB = CD = 6√10 см
Провести две высоты BK⊥AD и CM⊥AD:
KM = BC = 12 см
AK = MD = (AD - KM)/2 = (24 - 12)/2 = 6 см
ΔCMD: ∠CMD = 90°; MD = 6 см; CD = 6√10 см. Теорема Пифагора
CM² = CD² - MD² = (6√10)² - 6² = 360 - 36 = 324
CM = √324 = 18 см
ΔACM: ∠AMC = 90°; CM = 18 см; AM = 6+12 = 18 см ⇒
CM = AM ⇒ ∠CAM = ∠ACM = 90°/2 = 45°
Окружность, которая описана около трапеции, описана и около ΔACD.
Теорема синусов:
[tex] \frac{CD}{sinCAD} =2R \\ \\ R = \frac{CD}{2sin45^o} = \frac{6 \sqrt{10} }{2* \frac{ \sqrt{2} }{2} } = 6 \sqrt{5} [/tex]
Ответ: радиус описанной окружности равен 6√5 см
Новые вопросы по Геометрии
10 - 11 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
3 минуты назад
5 - 9 классы
4 минуты назад
10 - 11 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад