Анонимно
На отрезке АВ выбрана точка С так что АС=80;ВС=2 Построена окружность с центром А,проходящая через точку С.
Найдите длину отрезка касательной проведённой из В к этой окружности
Ответ
Анонимно
Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть
АС это радиус окружности.
Длина секущей, проведённой из точки В равна 80+80+2=162.
Длина внешней части секущей равна 2.
K^2=162*2=324
K=18
АС это радиус окружности.
Длина секущей, проведённой из точки В равна 80+80+2=162.
Длина внешней части секущей равна 2.
K^2=162*2=324
K=18
Новые вопросы по Геометрии
5 - 9 классы
2 минуты назад
10 - 11 классы
2 минуты назад
5 - 9 классы
2 минуты назад
5 - 9 классы
3 минуты назад
10 - 11 классы
3 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад
Студенческий
1 месяц назад