Анонимно
В равнобедренной трапеции диагональ перпендикулярна боковой стороне.Найдите площадь этой трапеции ,если длины её боковой стороны и диагонали равны 3 и 4 соответственно.
Ответ
Анонимно
Трапеция АВСД (боковые стороны АВ=СД=3, диагональ АС=ВД=3, <АСД=90°)
Из прямоугольного ΔАСД:
АД=√(АС²+СД²)=√9+16=√25=5
Опустим высоту трапеции СН из вершины С на основание АД (она же высота ΔАСД, опущенная из прямого угла на гипотенузу)
СН=√АН*НД
Известно, что в равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований
АН=(АД+ВС)/2=(5+ВС)/2
НД=(АД-ВС)/2=(5-ВС)/2
СН²=(5+ВС)/2*(5-ВС)/2=(25-ВС²)/4
Также СН²=СД²-НД²=9-(5-ВС)²/2²=(36-(25-2ВС+ВС²))/4=(11+2ВС-ВС²)/4
Приравниваем
(25-ВС²)/4=(11+2ВС-ВС²)/4
25=11+2ВС
ВС=14/2=7 что невозможно, т.к. ВС<АД
Значит в задаче ошибка какая-то
Из прямоугольного ΔАСД:
АД=√(АС²+СД²)=√9+16=√25=5
Опустим высоту трапеции СН из вершины С на основание АД (она же высота ΔАСД, опущенная из прямого угла на гипотенузу)
СН=√АН*НД
Известно, что в равнобедренной трапеции высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований
АН=(АД+ВС)/2=(5+ВС)/2
НД=(АД-ВС)/2=(5-ВС)/2
СН²=(5+ВС)/2*(5-ВС)/2=(25-ВС²)/4
Также СН²=СД²-НД²=9-(5-ВС)²/2²=(36-(25-2ВС+ВС²))/4=(11+2ВС-ВС²)/4
Приравниваем
(25-ВС²)/4=(11+2ВС-ВС²)/4
25=11+2ВС
ВС=14/2=7 что невозможно, т.к. ВС<АД
Значит в задаче ошибка какая-то
Новые вопросы по Геометрии
10 - 11 классы
1 минута назад
5 - 9 классы
2 минуты назад
5 - 9 классы
2 минуты назад
10 - 11 классы
2 минуты назад
10 - 11 классы
4 минуты назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад