Анонимно
Из всех конусов с данной боковой поверхностью S найти тот, у которого объем наибольший
Ответ
Анонимно
Обозначим L - образующая конуса, R - радиус основания.
Объём конуса V= (1/3)pi*R²*√(L²-R²).
Производная этой функции по R равна :
V' = (πR(2L²-3R²) / (3*√(L²-R²).
Приравняв её нулю, получим R = √(2/3)*L.
При таком соотношении R и L объём конуса будет наибольшим.
При заданной площади боковой поверхности конуса (S) R и L находим из соотношения Sбок = πRL.
Объём конуса V= (1/3)pi*R²*√(L²-R²).
Производная этой функции по R равна :
V' = (πR(2L²-3R²) / (3*√(L²-R²).
Приравняв её нулю, получим R = √(2/3)*L.
При таком соотношении R и L объём конуса будет наибольшим.
При заданной площади боковой поверхности конуса (S) R и L находим из соотношения Sбок = πRL.
Новые вопросы по Математике
5 - 9 классы
1 минута назад
1 - 4 классы
1 минута назад
10 - 11 классы
1 минута назад
1 - 4 классы
1 минута назад
1 - 4 классы
1 минута назад
Нужен ответ
10 - 11 классы
1 месяц назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад
Студенческий
2 месяца назад